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The effect of spatial variability of the hydraulic conductivity upon free-surface flow
is investigated in a stochastic framework. We examine the three-dimensional free-
surface gravitational flow problem for a sloped mean uniform flow in a randomly
heterogeneous porous medium. The model also describes the interface between two
fluids of differing densities, e.g. freshwater/saltwater and water/oil with the denser
fluid at rest. We develop analytic solutions for the variance and integral scale of
free-surface fluctuations and of specific discharge on the free surface. Additionally,
we obtain semi-analytic solutions for the statistical moments of the head and the
specific discharge beneath the free surface. Statistical moments are derived using a
first-order approximation and then compared with their counterpart in an unbounded
medium. The effect of anisotropy and angle of mean uniform flow on the statistical
moments is analysed. The solutions can be used for solving more complex flows,
slowly varying in the mean.

1. Introduction
Free-surface flows occur in a multitude of hydrological and reservoir engineering

applications. Many water bearing formations (aquifers) are unconfined and bounded
from above by a water table, which is commonly modelled as a sharp free surface of
constant pressure. Likewise, in coastal aquifers freshwater flows above seawater bodies
and the separation zone is modelled as a sharp interface. In reservoir engineering a
similar configuration occurs for a lighter fluid (oil) flowing above a body of a denser
one (water). The drawdown of the water table or the upconing of the interface near
pumping wells constitute the main limiting factor of the available discharge. These
important applications have motivated a large body of literature on mathematical
modelling of free-surface flows in porous media.

The traditional approach is to regard the medium as homogeneous, of constant
hydraulic conductivity K . Various approaches to and solutions of free-surface flows
have been advanced in the past for such media (e.g. Polubarinova–Kotchina 1962;
Bear 1972) and the subject is still a topic of active research in the mathematical and
engineering literature.

In the last two decades it was recognized in the hydrological literature that natural
formations are heterogeneous and the spatially variable conductivity K(x) may change
by orders of magnitude in the same geological unit. These variations are of an irregular
nature and are characterized by length scales much larger than the pore scale. This
intrinsic large-scale heterogeneity may have a large impact on the transport of solutes.
The common approach is to modelK as a random space function (RSF), characterized



328 O. Amir and G. Dagan

by various statistical moments, and to regard the equations of flow as stochastic (e.g.
Dagan 1984). Most of the literature deals with the case of mean uniform flows in
unbounded domains. A few studies have examined the impact of planar boundaries
of given flux (Rubin & Dagan 1988; Lessoff, Indelman & Dagan 2000) or constant
pressure head (Rubin, Dagan 1989; Paleologos, Neuman & Tartakovsky 1996).

Very little work has been done, however, on the impact of random heterogeneity
upon free-surface flows, which is understandable in view of the problem’s complexity.
Recently, Dagan & Zeitoun (1998) have derived a few solutions under the Dupuit
(shallow water) assumption for a stratified medium, while Fenton & Griffiths (1996),
have solved numerically a particular case of two-dimensional flow. Tartakovsky
(1999) has derived a complex set of nine integro-differential equations describing the
mean and covariance of pressure head and free-surface position under more general
conditions, but does not provide analytical or numerical solutions. Most recently,
Tartakovsky & Winter (2001) present a more thorough investigation of free-surface
flow in a randomly heterogeneous porous medium. Ignoring the effect of gravity
on flow in the saturated zone, Tartakovsky & Winter use a first-order asymptotic
expansion to obtain governing equations for the covariance of the free-surface position
which they then solve analytically in a one-dimensional case.

In the present study we analyse for the first time the impact of heterogeneity of a
three-dimensional structure upon free-surface flows. The approach is the aforemen-
tioned one: the hydraulic conductivity is regarded as a RSF and so are the dependent
variables of interest (pressure head, fluid velocity and free-surface elevation). We aim
at determining the statistical moments of these variables. The problem is very complex
and there are no exact analytical solutions even for mean uniform flow in unbounded
formations, while several have been derived for free-surface flow in homogeneous
formations. As a first step toward acquiring a better understanding of the impact
of the free surface and for the purpose of comparison with previous approximate
solutions for unbounded formations, we address here the simplest case of a mean
uniform flow in a semi-infinite domain below a free surface (or above an interface).
In a homogeneous medium this problem has an exact solution: a gravity flow of
constant velocity, bounded by a sloping, planar, free surface (figure 1). Similarly, a
planar interface occurs between a lighter fluid (freshwater) flowing uniformly above
a standing denser one (saltwater), with neglect of mixing (figure 1). The spatially
variable, random, K(x) causes the free surface to fluctuate around its mean position
(figure 2) and similarly for other dependent variables. Following the common ap-
proach, we assume a stationary and lognormal K , such that Y = lnK is normal of
constant mean mY and variance σ2

Y . To obtain simple, yet illuminating, solutions of an
analytical or semi-analytical nature we adopt the same approximation that was used
for similar problems in unbounded domains: a first-order approximation in σY . This
weak heterogeneity solution has been found to be quite accurate for σY < 1 for flow
in unbounded domains. All flow variables are normal at this order and completely
characterized by their mean O(1) and two-point covariances O(σ2

Y ).
Zeroth- and first-order terms of the expansion in σY yield the leading-order terms of

the mean and mean zero fluctuation, respectively, of flow variables such as hydraulic
head, free-surface position and velocity field. In this paper we will begin by describing
the mathematical framework of the free-surface flow problem. Using asymptotic
expansion, we derive zeroth- and second-order statistical moments of the hydraulic
head, the free-surface position, and the velocity field. From these equations we obtain
analytic and semi-analytic results which we use to analyse the effect of heterogeneity
on flow in the presence of the free surface.
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Figure 1. (a) Free-surface and (b) interface flow.
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Figure 2. Uniform mean flow in a finite domain.

2. Statement of the problem
2.1. General

We are interested in modelling flow, which is uniform in the mean, in a heterogeneous
medium bounded by a free surface from above. The log of conductivity Y = ln(K)
is taken to be normal as is most frequently the case in field investigations. As such,
it is fully described by its mean and two-point covariance. We will consider here
for illustration the particular case where the covariance has a Gaussian anisotropic
structure, e.g. CY (x, x̃) = σ2

Y exp[−π(x− x̃)2/4I2
x − π(y − ỹ)2/4I2

y − π(z − z̃)2/4I2
z ].

Steady-state flow in a saturated porous medium is described by the continuity
equation and Darcy’s law,

∇ · q(x) = 0, (2.1)

q(x) = −K(x)∇ϕ (2.2)

respectively, where q is specific discharge, K is hydraulic conductivity, ϕ = (p/γ)+z is
the head, p is the pressure, γ is the fluid specific weight and z is a vertical coordinate.
Combining (2.1) and (2.2) leads to

∇ · [K(x)∇ϕ] = 0. (2.3)

Equation (2.3) is typically solved subject to the following boundary conditions:

ϕ(x, t) = Φ(x) (x ∈ ΓD), (2.4)

q(x, t) · n(x) = Q(x) (x ∈ ΓN), (2.5)

where ΓD is a Dirichlet boundary, ΓN is a Neumann boundary, and n(x) is a unit
vector normal to the boundary.

The boundary condition for uniform flow in an infinite medium is

ϕ = −J · x (x ∈ ΓD). (2.6)
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when the boundary ΓD is let to expand to infinity. For instance, this can be seen as
the limiting case for the finite domain shown in figure 2, as D → ∞ and L → ∞,
where the conditions on the boundaries ΓD1 and ΓD3 are of constant head, and the
condition on the Neumann boundary ΓN is of no flow, i.e.

ϕ(x) = ϕA (x ∈ ΓD1), (2.7)

ϕ(x) = ϕB (x ∈ ΓD3), (2.8)

∇ϕ(x) · n = 0 (x ∈ ΓN). (2.9)

Equations (2.7)–(2.9) are a particular case of (2.6) with J parallel to the bottom and
|J| = (ϕA − ϕB)/L, or equivalently, |J| = sin α.

The solution of this problem is greatly complicated when part of the boundary
Γ is made up of a free surface, i.e. a boundary whose shape is unknown a priori,
rendering this problem nonlinear. Two classic free-surface problems in hydrology and
in petroleum engineering are the determination of the interface between the saturated
and unsaturated zones (free surface) and between two fluids of differing densities. On
the interface between the saturated and unsaturated zones, the free-surface boundary
condition is of zero pressure, i.e. ϕ = z. Additionally, the free surface is a streamsurface
and thus there is no flow normal to it. Hence, the two conditions on the free surface
z = η(x, y) are

ϕ(x, y, z) = z (z = η), (2.10)

q(x, y, z) · n = 0 (z = η). (2.11)

By substituting n ∼ (∂η/∂x, ∂η/∂y,−1) and using Darcy’s Law (2.2) equation (2.11)
becomes

∂ϕ

∂z
− ∂η

∂x

∂ϕ

∂x
− ∂η

∂y

∂ϕ

∂y
= 0 (z = η). (2.12)

In the case of one fluid uniformly flowing above a denser stationary fluid as in the
case with fresh/saltwater and oil/water (figure 1), the interface condition of pressure
continuity yields

ϕ(x, y, z) = −∆γ

γ1

z (z = η), (2.13)

where γ1 is the density of the lighter fluid, ∆γ = γ2− γ1 is the difference in densities of
the two fluids, Bear (1972). Since the kinematical condition (2.12) remains unchanged,
it is seen that the two problems (2.10), (2.12) and (2.13), (2.12) are equivalent if in
the second one we replace ϕ by −(γ1/∆γ)ϕ. We shall therefore refer only to the
free-surface problem in what follows.

2.2. First-order approximation

In order to solve for the statistical moments of flow variables in a stationary mildly
heterogeneous medium in which the variance of the log conductivity Y = ln(K)
is small, we expand all terms in the governing equation (2.3), and the boundary
conditions (2.10), (2.12) in orders of σY . Substituting first K(x) = exp[Y (x)] into (2.3)
and assuming that Y is stationary, our governing equation becomes

∆ϕ+ ∇Y ′ · ∇ϕ = 0 (z 6 η) (2.14)

supplemented by the boundary conditions (2.10), (2.12). Here, Y (x) = mY + Y ′(x),
where the mean mY = 〈Y 〉 is a constant and Y ′(x) = Y − mY is its fluctuation.
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Since we investigate a flow that is uniform in the mean with a sloped mean free
surface (figure 1), it is useful to operate in the transformed system x′

x = x′ cos(α) + z′ sin(α), (2.15)

z = −x′ sin(α) + z′ cos(α), (2.16)

where x′, y′ are parallel to J and z′ is normal. This renders the governing equations
(2.14), (2.10), (2.12) of the form

∆ϕ+ ∇Y ′ · ∇ϕ = 0 (z < η) (2.17)

ϕ(x, y, z) = −x sin α+ η cos α (z = η), (2.18)

∂ϕ

∂z
− ∂η

∂x

∂ϕ

∂x
− ∂η

∂y

∂ϕ

∂y
= 0 (z = η). (2.19)

where for simplicity we have retained here and in what follows the notation x =
(x, y, z) for the sloped system (figure 2). These are the exact equations and the starting
point for the perturbation expansion

Y = mY + Y ′, (2.20)

ϕ = ϕ0 + ϕ1 + · · · , (2.21)

η = η0 + η1 + · · · , (2.22)

ϕ(x, y, η) = ϕ0(x, y, η0) + ϕ1(x, y, η0) + η1

∂ϕ0(x, y, η0)

∂z
+ · · · , (2.23)

where ϕ0, η0 are O(1) and ϕ1, η1 are O(Y ′).
Substituting the first-order expansions of ϕ and η into the transformed flow

equations (2.17)–(2.19) yields at zero order for the mean head ϕ0 = 〈ϕ〉+ O(σ2
Y )

∆ϕ0 = 0 (z 6 η0), (2.24)

∇ϕ0 = (− sin α, 0, 0) (x→∞), (2.25)

ϕ0(x, y, η0) = −x sin(α) + η0 cos(α) (z = η0(x, y)), (2.26)

∂ϕ0

∂z
− ∂η0

∂x

∂ϕ0

∂x
− ∂η0

∂y

∂ϕ0

∂y
= 0 (z = η0(x, y)), (2.27)

where α is the slope of the mean gradient J = (sin α, 0, 0) with respect to the horizontal
direction (figure 1). The exact solution to these equations is ϕ0 ≡ −x sin α, η0 ≡ 0, i.e.
gravitational free-surface flow in a homogeneous medium (figure 2).

Expanding (2.17)–(2.19) at first order, with ϕ0 = −x sin α, yields for ϕ1

∆ϕ1 − sin α
∂Y ′

∂x
= 0 (z 6 0), (2.28)

η1 =
ϕ1(x, y, 0)

cos α
(z = 0), (2.29)

∂ϕ1

∂z
+ tan α

∂ϕ1

∂x
= 0 (z = 0), (2.30)

Equations (2.28)–(2.30) for the first-order approximation constitute the starting
point for the developments of the rest of the present study. Since 〈ϕ1〉 = 0 and
〈η1〉 = 0, ϕ1 and η1 are the leading-order terms of the fluctuations of ϕ and η
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respectively. Hence, from this point on we take Cϕ and Cη to be given by their
second-order approximations, Cϕ1

and Cη1
respectively. Furthermore, due to the

linear dependence on Y ′ in (2.28), both ϕ1 and η1 are normal and characterized
completely by their second moments.

The linearization of the exact equations (2.14), (2.10), (2.12) results in three major
simplifications: (i) ϕ1 satisfies a Poisson equation with a random forcing term, which
has been used widely in solving problems in unbounded domains. Here, it applies to
the half-space z 6 0; (ii) the free-surface boundary condition for ϕ1 is linearized and
posed on z = 0; and (iii) after solving for ϕ1, (2.29) renders η1 in a simple manner.
The linearized free-surface boundary conditions do not depend on K and they are
the same as the ones employed for solving flow in homgeneous medium under the
assumption of small departure of the free surface from a plane (see e.g. Dagan 1989).

The mixed boundary condition on the free surface, (2.30), is the crux of the matter
since it includes the slope of the mean free surface. It has two simple asymptotic
limits: (i) for α� 1 it degenerates to a condition of normal zero flux, i.e. a rigid wall
at z = 0 (this is the case of major interest in hydrological and reservoir engineering
applications for which flow is primarily in the horizontal direction), and (ii) α→ π/2,
i.e. the mean free surface is close to vertical, the condition becoming now of zero
head fluctuation. This would describe, for instance, a vertical gravitational flow from
a ponded soil surface. It is instructive to see that these two extreme cases, a rigid
wall and a pressure relief condition, are similar to the ones of small or large Froude
numbers for free-surface flow of an ideal liquid. However, the structure of the free-
surface condition is different for finite α.

In principle we could first solve (2.28)–(2.30) for ϕ1 and η1 and obtain subsequently
the moments of interest of these random variables. It was found to be easier, in
terms of mathematical manipulations, to solve directly the equations satisfied by
these moments.

3. Statistical moments of the head and the free-surface profile
We derive now the two-point covariances CϕY (x, x̃) = 〈ϕ1(x)Y ′(x̃)〉, Cϕ(x, x̃) =

〈ϕ1(x)ϕ1(x̃)〉 and Cη(x, x̃) = 〈η1(x)η1(x̃)〉. These moments are O(σ2
Y ) and neglected

terms are of O(σ4
Y ). Since all the variables are normal, these covariances define

completely the joint statistical structure of the Y ′, ϕ1 fields in terms of the given
CY (x− x̃). For the latter, we shall carry out detailed computations for the particular
case of axisymmetric Gaussian CY = exp[−(πr2)/(4I2) − π(z − z̃)2/(4I2

v )], where
r = (x − x̃, y − ỹ) is a two-dimensional vector in a plane parallel to the mean free
surface with r = |r|. This is similar to the more general covariance mentioned in § 2.1,
except that we assume that the principal axes of anisotropy are now parallel (I) and
normal (Iv) to the mean free surface. Keeping the anisotropy axes fixed, while rotating
the mean free surface, would have complicated the computations.

We start with the cross-covariance CϕY whose governing equations are obtained by
multiplying (2.28)–(2.30) by Y ′(x̃) and averaging,

∆CϕY (x, x̃)− sin α
∂CY (x̃, x)

∂x
= 0 (z 6 0), (3.1)

∂CϕY (x, x̃)

∂z
+ tan α

∂CϕY (x, x̃)

∂x
= 0 (z = 0), (3.2)

where the Laplacian is in terms of x.
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In a similar manner we multiply (2.28)–(2.30) by ϕ1(x̃) and average. This yields

∆Cϕ(x, x̃)− sin α
∂CϕY (x̃, x)

∂x
= 0 (z 6 0), (3.3)

∂Cϕ(x, x̃)

∂z
+ tan α

∂Cϕ(x, x̃)

∂x
= 0 (z = 0). (3.4)

Due to the stationarity in the (x, y)-plane, all the aforementioned two-point covari-
ances are functions of the variables r, z and z̃ (see Appendix (A 1)–(A 4)).

It is seen that the two covariances satisfy similar equations. Our methodology to
solve them is to take the Fourier transform of the two sets of equations in the r-plane,
reducing the problem to the ODE (ordinary differential equation) in z, shown in
Appendix A, (A 5)–(A 8). The analytic solutions for the Fourier transforms of CϕY
and Cϕ are then given in terms of the Green function G(z, ξ, k) as

ĈϕY (k, z, z̃) = −ik1 sin α

∫ 0

−∞
G(z, ξ, k)ĈY (k, ξ, z̃)dξ, (3.5)

Ĉϕ(k, z, z̃) = −ik1 sin α

∫ 0

−∞
G(z, ξ, k)ĈϕY (−k, z̃, ξ)dξ, (3.6)

where the Fourier transform is defined as

f̂(k) = (1/2π)

∫ ∞
−∞

∫ ∞
−∞
f(rx, ry) exp(ik · r)drxdry

with k = (kx, ky) and κ = |k|. Here, the Green function G(z, ξ, k) satisfies the equation

(G)zz − κ2G = δ(z − ξ) (z 6 0), (3.7)

(G)z − ik1 tan αG = 0 (z = 0), (3.8)

with solution

G(z, ξ, k) = − κ+ ibk1

2κ(κ− ibk1)
eκ(ξ+z) − 1

2κ

{
eκ(ξ−z), z > ξ,

eκ(z−ξ), z 6 ξ,
(3.9)

where b = tan α.
Using the Gaussian covariance for Y , ĈY is given by

ĈY (k, z, z̃) =
2σ2

Y I
2

π
exp

(
−π(z − z̃)2

4I2
v

− κ2I2

π

)
. (3.10)

Substituting (3.9) and (3.10) into (3.5), we find that ĈY ϕ and Ĉϕ can be computed
analytically (see Appendix A, (A 9)–(A 10)). For illustration, on the free surface, with
z̃ = z = 0, ĈY ϕ and Ĉϕ simplify to

ĈϕY (k, 0, 0) =
2i sin ασ2

Y I
2Iv

π
exp

(
− (I2 − I2

v )κ2

π

)[
k1(κ+ ibk1)

(κ2 + b2k2
1)

erfc

(
κIv

π1/2

)]
, (3.11)

Ĉϕ(k, 0, 0) =
2 sin2 ασ2

Y I
2Iv

π
exp

(
− (I2 − I2

v )κ2

π

)[
k2

1

κ(κ2 + b2k2
1)

erfc

(
κIv

π1/2

)]
. (3.12)

To grasp the impact of the presence of a free surface on flow, we analyse and
discuss a few statistical measures of interest. The variance σ2

ϕ, as a function of the
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Figure 3. Normalized variance of ϕ1 on the free surface, σ2
ϕ(0)/σ2

ϕ(−∞), as a function of α for

several values of ε = Iv/I , the anisotropy ratio.

distance to the free surface z, is obtained by inverting Ĉϕ for r = 0, z = z̃. For z = 0,
i.e. on the free surface, the integrations can be completed analytically, yielding

σ2
ϕ(0) =

2 cos2 α(1− cos α)IIvσ
2
Y

π(1− ε2)1/2
arctan

(
1− ε2

ε2

)1/2

, (3.13)

where ε = Iv/I is the anisotropy ratio. For Iv = I , this reduces to σ2
ϕ(0) = 2 cos2 α(1−

cos α)I2σ2
Y /π. A similar calculation for the mixed moment of ϕ and Y , CϕY (r, z, z̃),

when r = 0 and z = z̃ = 0 yields CϕY (0, 0, 0) = − cos α(1− cos α)Ivσ
2
Y /(1 + ε).

The limit of σ2
ϕ(z) as z → −∞ can also be determined analytically, namely

σ2
ϕ(−∞) =

sin2 αIIvσ
2
Y

2π(1− ε2)

(
ε+

1− 2ε2

(1− ε2)1/2
arctan

(
1− ε2

ε2

)1/2
)
, (3.14)

which simplifies to σ2
ϕ(−∞) = 2 sin2 αI2σ2

Y /(3π) in an isotropic medium. This is similar

to the expression for σ2
ϕ in an unbounded domain and for an exponential CY (Dagan

1989).
To illustrate the results, the normalized variance, σ2

ϕ(0)/σ2
ϕ(−∞), which depends

only on α and the anisotropy ratio ε = Iv/I , is represented in figure 3. This ratio
reflects the impact of the bounded domain and the free-surface condition on the head
fluctuations. Inspection of figure 3 shows that the relative head variance is indeed
maximal for α = 0, i.e. for flow beneath a rigid wall, and reduces to zero for a
vertical mean free-surface position (α = π/2). This is in agreement with our previous
discussion of these limit cases. If σ2

ϕ(0) is made dimensionless with respect to the

heterogeneity length scale I2, the dependence on α has a different nature: it is zero
for α = 0 (rest) and α = π/2 (pressure relief) with a maximum at α = cos−1(2/3).
Additionally, we see that the anisotropy increases the variance of head relative to an
unbounded domain, no matter what the angle of mean uniform flow.
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Figure 4. Normalized variance of ϕ1 as a function of dimensionless depth z/Iv in an isotropic
medium for several angles of mean incline, α = π/2, π/3, π/4, π/6, π/12.

Another aspect of the impact of the free surface is revealed by the change of
σ2
ϕ(z)/σ2

ϕ(−∞) with z for fixed α and ε. This was obtained by a numerical quadrature
and is represented in figure 4 for several values of α, when ε = 1 (isotropic media). The
striking result is the slow convergence of σ2

ϕ(z) to σ2
ϕ(−∞). This can be understood

from the inspection of the head variogram in an unbounded domain when α is close
to π/2. It can be seen (Dagan 1989, equation 3.7.12) that the decay of the transverse
variogram with distance z is like z−1, i.e. the integral scale is unbounded. Since the
boundary condition for π/2, ϕ1 = 0, is equivalent to conditioning by given ϕ in an
unbounded domain, the impact propagates at large distances.

It is worth emphasizing that the analytical solution for a rigid wall boundary is of
interest in itself. In that case we replace sin α = J in the above results for ϕ and let
b = tan α→ 0 while J is kept fixed.

We analyse next the statistics of the free-surface fluctuations, which is one of the
main objectives of this study. As the variance of the free-surface position is directly
related to the variance of ϕ1 via (2.29), we have

σ2
η =

2(1− cos α)IIvσ
2
Y

π(1− ε2)1/2
arctan

(
1− ε2

ε2

)1/2

, (3.15)

which simplifies to σ2
η = 2(1− cos α)I2σ2

Y /π for isotropic media Iv = I .

We display in figure 5 the dimensionless variance σ2
η/(σ

2
Y IIv) as function of α for a

few values of ε. For α = 0 the variance is zero as the driving flow gradient J = sin α
tends to zero. The η-fluctuations reach their maximum for α = π/2 since the gradient
is also maximal and the condition is of pressure relief with fluctuating velocities
normal to the mean free surface. If I is kept fixed while ε→ 0, σ2

η also tends to zero
since the values in figure 5 have to be multiplied by ε.

Dividing the mixed moment CϕY (0, 0, 0) by cos α, we can obtain the mixed moment
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of ε = Iv/I , the anisotropy ratio.

of η and Y at the same point (x, y) on the free surface,

CηY = − (1− cos α)Ivσ
2
Y

1 + ε
. (3.16)

It is seen that the correlation between Y and the free-surface position η is zero
for α = 0, i.e. for a rigid wall. This result is consistent with that pertaining to an
unbounded domain, Dagan (1989). Notice that CηY becomes negative for α > 0 and
reaches its minimal value for α = π/2. The negative sign indicates that an increase of
the local permeability (Y ′ > 0) causes a drop of the free surface.

Another important parameter to characterize η is the integral scale, Iη =∫ ∞
0
Cη(rx, 0)drx/σ

2
η which by (2.29) is the same as that of ϕ1 on z = 0. By a quadrature

we obtain its value,

Iηx = Iϕx =
I sin α[tanh−1(sin α)](1− ε2)1/2

(1− cos α) arctan(1− ε2/ε)1/2
. (3.17)

We have represented in figure 6 the dependence of Iηx/I upon α, for a few values of
ε, showing that an increase in α leads to an increase in the integral scale.

4. Statistical moments of flux
The specific discharge q = (qx, qy, qz) is given by q = −eY∇ϕ such that in the

first-order approximation the mean of q, q0, and its first-order fluctuation q1 are
given by

q0 = −KG

 − sin α

0

0

 and q1 = −KG

 −Y ′ sin α+ (∂ϕ1/∂x)

∂ϕ1/∂y

∂ϕ1/∂z

 (4.1)
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Figure 6. Normalized integral scale of ϕ1 as a function of angle of mean incline α for several
values of ε = Iv/I , the anisotropy ratio.

respectively, where KG = emY is the geometric mean. Multiplying q1(x) by q1(x̃) and
averaging gives the covariances,

Cqx = K2
G

[
(sin2 α)CY (r, z, z̃)− ∂2Cϕ(r, z, z̃)

∂r2
x

− sin α

(
∂CϕY (r, z, z̃)

∂rx
− ∂CϕY (−r, z̃, z)

∂rx

)]
, (4.2)

Cqy = K2
G

∂2Cϕ(r, z, z̃)

∂r2
y

, (4.3)

Cqz = K2
G

∂2Cϕ(r, z, z̃)

∂zz̃
, (4.4)

to second order in σY . As we know the analytical form of Cϕ and CϕY in the Fourier
space, we now express the covariance of flux in terms of the Fourier transforms of
Cϕ and CϕY . For example, the x-component of the flux covariance is given by

Cqx(r, z, z̃) = K2
G

[
CY sin2 α+

1

2π

∫ ∞
−∞

∫ ∞
−∞
k2

1Ĉϕ(k, z, z̃)e−irxk1−iryk2dk1dk2

+
i sin α

2π

∫ ∞
−∞

∫ ∞
−∞
k1(ĈϕY (k, z, z̃)− ĈϕY (−k, z̃, z))e−irxk1−iryk2dk1dk2

]
.

(4.5)

Setting rx = ry = 0 and z = z̃ yields the variance of qx. On the free surface, i.e. when
z = 0, the analytic solution of σ2

qx
is given by

σ2
qx

= K2
Gσ

2
Y

[
sin2 α+

c2ε

4(1− ε2)

(
tan−1(1− ε2/ε2)1/2

(1− ε2)1/2
− ε
)]

, (4.6)
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where c2 = cot2 α[6 cos α− 5 + cos 2α(1− 2 cos α)].
In a similar manner, we can calculate σ2

qy
(z), and σ2

qz
(z), the variance of y and z com-

ponents of specific discharge respectively. This development is given in Appendix B,
and it yields the following values on the free surface, z = 0:

σ2
qy

=
1

8
K2
Gσ

2
Y cos2(2α) sec4

(α
2

) ε

1− ε2

(
tan−1(1− ε2/ε2)1/2

(1− ε2)1/2
− ε
)
, (4.7)

σ2
qz

= 2K2
Gσ

2
Y (1 + 2 cos α) sin4

(α
2

) ε

1− ε2

(
tan−1(1− ε2/ε2)1/2

(1− ε2)1/2
− ε
)
. (4.8)

In an isotropic medium we find that the specific discharge variances are given by

σ2
qx

= K2
Gσ

2
Y [sin2 α+ c2/6], σ2

qy
= K2

Gσ
2
Y cos2(2α) sec4(α/2)/12,

σ2
qz

= 4K2
Gσ

2
Y (1 + 2 cos α) sin4(α/2)/3.

Away from the free surface, the specific discharge variance can be computed
numerically via one numerical quadrature (see Appendix B) and can be computed
analytically at z = −∞. At z = −∞, the problem is identical to the problem
of mean uniform flow in an infinite medium such that in an isotropic medium,
σ2
qx

= 8σ2
Y e2mY sin2 α/15 and σ2

qx
= σ2

Y e2mY sin2 α/15 (e.g. Dagan 1989).
The longitudinal integral scale of specific discharge in the direction of mean uniform

flow is given by

Iqx(z) =

∫ ∞
0

Cqx(rx, 0, z, z)drx

σ2
qx

(z)
. (4.9)

Integrating in terms of rx in (4.5), utilizing the fact that
∫ ∞

0
e−irxk1drx = πδ(k1), and

then evaluating the integral in k1 yields

Iqx(z) =
15

8

σ2
qx

(−∞)

σ2
qx

(z)
I, (4.10)

i.e. σ2
qx

(z)Iqx(z) = σ2
Y K

2
G sin2 αI .

In figures 7 and 8 we present the normalized x- and z-direction flux variances
respectively in an isotropic medium for α = π/36, π/6, π/4, and π/2. The flux variance
is normalized by its value at infinity and we notice a rapid convergence of the flux
to its value at infinity, within 3 to 4 vertical length scales, Iv , away from the free
surface. On and near the free surface, we notice that the angle of mean incline acts
to increase the relative flux variances, which reach their maximal values at α = π/2,
and their minimal values as α approaches zero. Regardless of α, we see in figure 7
that, the variance of qx is at its maximum on the free surface, and quickly reduces
to its infinite-medium value. In contrast, it is seen in figure 8 that for very small α,
the variance of the z-direction flux is at its minimum on the free surface, and then
increases to its infinite-medium solution, whereas for larger angles the variance is
maximal on the free surface. This is understandable in the light of the rigid wall
and pressure release analogies to the free-surface boundary condition at α = 0 and
α = π/2 respectively.

Examining the behaviour of the integral scale Iqx in (4.10), it is seen that Iqx
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(−∞), as a function of dimensionless

depth z/Iv for several angles of mean incline α.

is inversely proportional to the normalized flux. The results for the normalized
x-direction flux qx in figure 7 therefore show us that the integral scale Iqx holds its
minimal value on the free surface, and rapidly increases to its infinite medium value.
In contrast, the product σ2

qx
Iqx , of interest in transport, is constant and equal to its

value in an unbounded domain.
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5. Summary and conclusions
We have derived the statistical moments of flow variables in the presence of a free

surface in a randomly heterogeneous medium in which the mean flow is uniform.
Making the assumption of mild heterogeneity in the hydraulic conductivity, we have
used a perturbation expansion approach to derive an analytical solution for the
free-surface position mean and variance. Additionally, we were able to compute the
mean and variance of pressure head and fluid flux analytically on the free surface
and numerically beneath it. The impact of the angle of mean incline on the statistical
moments of pressure head and flux field was examined.

The variance and integral scale of the free-surface fluctuations are of interest in
many applications in which the flow is uniform or slowly varying. They are indicative
of the departure from the mean of observed water table elevations in aquifers. In
the case of interface flows, the standard deviation can be regarded as a measure of
heterogeneity-induced mixing. It is seen that both variance and integral scales are
minimal at small slopes and increase with α.

Another interesting result is the slow convergence with depth of the head variance
from its free-surface value to that pertaining to an unbounded domain. In fact, the
influence of the free-surface boundary on head fluctuations is felt beyond a distance
of ten integral scales. The flux and the associated velocity behaviour is different: the
influence of the free surface is felt in a boundary layer. At a depth of approximately
three integral scales, the flux components variance reaches its value in an unbounded
domain.

The analytical and qualitative results of this work can be applied to all free-surface
problems in which the mean flow is slowly varying. Important examples include free-
surface flow towards a well sufficiently far away from it and interface flow towards
the sea far from the outlet.

This research was supported by a grant from the Ministry of Science, Israel.

Appendix A. Derivation of the solution of the head
As our problem is stationary in the (x, y)-plane, we perform a change of variables

to transform (3.1)–(3.4) to the most relevant coordinate system, rx = x − x̃ and
ry = y − ỹ:

∆Cϕ − sin α
∂CϕY (−r, z̃, z)

∂rx
= 0 (z 6 0), (A 1)

∂Cϕ

∂z
+ tan α

∂Cϕ

∂rx
= 0 (z = 0), (A 2)

∆CϕY − sin α
∂CY (r, z, z̃)

∂rx
= 0 (z 6 0), (A 3)

∂CϕY

∂z
+ tan α

∂CϕY

∂rx
= 0 (z = 0), (A 4)

where the Laplacian is in terms of (r, z), Cϕ = Cϕ(r, z, z̃), and CϕY = CϕY (r, z, z̃) =
CϕY (x, x̃). Notice that the CϕY (x̃, x) of (3.3) was replaced by CϕY (−r, z̃, z) as the
change of order between x and x̃ involves a change in the order between z and
z̃ as well as a change of sign in rx and ry . Taking the Fourier transform of these
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equations results in

(Ĉϕ)zz − κ2Ĉϕ + ik1 sin αĈϕY (−k, z̃, z) = 0 (z 6 0), (A 5)

(Ĉϕ)z − ik1 tan αĈϕ = 0 (z = 0), (A 6)

(ĈϕY )zz − κ2ĈϕY + ik1 sin αĈY (k, z, z̃) = 0 (z 6 0), (A 7)

(ĈϕY )z − ik1 tan αĈϕY = 0 (z = 0), (A 8)

whose solution is given in terms of the Green’s function G(z, ξ, k) via (3.5)–(3.6).
Using the Green’s function (3.9) we calculate ĈϕY (k, z, z) according to (3.5) to obtain

ĈϕY (k, z, z) =
ik1IvI

2σ2
Y sin α

πκ
exp

(−(I2 − I2
v )κ2

π

)[
2erfc

(
κIv

π1/2

)
−erfc

(
2κI2

v − πz
2Ivπ1/2

)
+

(κ+ ibk1)
2

κ2 + b2k2
1

e2κzerfc

(
2κI2

v + πz

2Ivπ1/2

)]
. (A 9)

Similarly, we can obtain an analytic expression for Ĉϕ.

Ĉϕ(k, z, z) =
k2

1IvI
2σ2

Y sin2 α

π2κ5(κ2 + b2k2
1)

exp

(−(I2 − I2
v )κ2

π

)
×
[
2Ivκ

3 exp

(
−κ

2I2
v

π

)(
− 2b2k2

1 exp

(
κz − πz2

4I2
v

)
+e2kz(−κ2 + b2k2

1) + κ2 + b2k2
1

)
+ (2(e2kz − 1)κ4I2

v

+(b2k2
1π+ κ2(π− 2b2k2

1I
2
v ))(1 + e2κz))erfc

(
κIv

π1/2

)
+(κ3(2κI2

v − πz) + b2k2
1(2κ2I2

v − π− κπz))
×erfc

(
2κI2

v − πz
2Ivπ1/2

)
+ e2κz(−κ3(2κI2

v + πz)

+b2k2
1(2κ2I2

v − π+ κπz))erfc

(
2κI2

v + πz

2Ivπ1/2

)]
, (A 10)

where b = tan α.

Appendix B. Derivation of the velocity covariance
In order to obtain the y and z components of the velocity covariance shown in (4.3)

and (4.4) we first represent the covariance of ϕ1 in terms of its Fourier transform in
polar coordinates (s, θ) such that

Cqy (r, z, z̃) = −K2
G

1

2π

∫ ∞
0

∫ 2π

0

Ĉϕ(k, z, z̃)s3 sin2 θe−irxs cos θ−irys sin θdθds, (B 1)

Cqz (r, z, z̃) = K2
G

1

2π

∫ ∞
0

∫ 2π

0

∂2Ĉϕ(k, z, z̃)

∂zz̃
e−irxs cos θ−irys sin θsdθds, (B 2)

where k = (s cos θ, s sin θ). To compute the variance on the free surface, we take
rx = 0, ry = 0, differentiate Ĉϕ(s, θ, z, z̃) with respect to z and z̃, in (B 2), and take the
limit as z → 0 and z̃ → 0 yielding (4.7) and (4.8).
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For z < 0, we can semi-analytically calculate σ2
q(z). Considering the solutions

for ĈϕY (k, z, z) and Ĉϕ(k, z, z) shown in (A 9)–(A 10), we can analytically compute
one of two necessary quadratures by setting rx = ry = 0, z̃ = z, and changing to
polar coordinates in (4.5). This transforms the expression for the x-direction velocity
variance to

σ2
qx

(z) = e2mY

[
σ2
Y sin2 α+

1

2π

∫ ∞
0

∫ 2π

0

Ĉϕ(k, z, z)s3 cos2 θdθds

+
i sin α

2π

∫ ∞
0

∫ 2π

0

(ĈϕY (k, z, z)− ĈϕY (−k, z, z))s2 cos θdθds

]
. (B 3)

Considering (A 9)–(A 10) we can analytically calculate the integral in θ yielding

σ2
qx

(z) = a2σ2
Y e2mY

(
1 +

IvI
2

8π2b4c

∫ ∞
0

s2 exp

(−(I2 − I2
v )s2

π

)
×
(

2 exp

(
I2
v s

2

π

)(
− 2(−8(8− 4b2 + 3b4)c) exp

(
sz − πz2

4I2
v

)
+(3b4c+ (−16 + (16− 8b2 + 3b4)c)e2sz)

)
Ivs+ (−b4c(13π+ 6I2

v s
2)

+e2sz(3b4cπ− 2(−16 + (16− 8b2 + 3b4)c)I2
v s

2))erfc

[
Ivs

π1/2

]
+(6b4cI2

v s
2 + π(8 + c(−8 + 4b2 + b4(5− 3sz))))erfc

[
2I2

v s− πz
2Ivπ1/2

]
+e2z(2(−16 + (16− 8b2 + 3b4)c)I2

v s
2 + π(8(−1 + c)(−1 + 2sz)

+b4c(5 + 3sz)− 4b2(−8 + 7c+ 2csz)))erfc

[
2I2

v s+ πz

2Ivπ1/2

]))
ds, (B 4)

where a = sin α, b = tan α and c = (1 + b2)1/2 = sec α.
In order to calculate σ2

qz
(z), we must first evaluate the derivatives in z and z̃, and

then take the limit as z̃ → z. Performing these operations and integrating in θ yields

σ2
qz

(z) =
1

2π

∫ ∞
0

1

b2cπ
a2Ivh

2σ2
Y

(
2 exp

(
−
(
Ivh

2s2

π
− πz2

4I2
v

))
×
(

4(−1 + c)esz − b2c exp

(
πz2

4I2
v

)
+ (4− 4c+ b2c) exp

(
2sz +

πz2

4I2
v

))
I2
v s

3

+ exp

(−(Ivh
2 − I2

v )s2

π

)
Ivs

2(−8e2szI2
v s

2 + c(b2π+ 2b2I2
v s

2

+e2sz(b2π− 2(−4 + b2)I2
v s

2)))erfc

[
Ivs

(π)1/2

]
+ exp

(−(Ivh
2 − I2

v )s2

π

)
×Ivs2(2π+ c(−2π− 2b2I2

v s
2 + b2πsz))erfc

[
2I2

v s− πz
2Ivπ1/2

]
+ exp

(−(Ivh
2 − I2

v )s2

π
+ 2sz

)
Ivs

2(2π+ 8I2
v s

2 + 4πsz

+c(−2π+ 2(−4 + b2)I2
v s

2 + (−4 + b2)πsz))erfc

[
2I2

v s+ πz

2Iv(π)1/2

])
ds.
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